EFFECTIVE DATE FEBRUARY 12, 2005* # NEBRASKA HEALTH AND HUMAN SERVICES REGULATION AND LICENSURE 178 NAC 12 #### TITLE 178 WATER WELL STANDARDS # CHAPTER 12 WATER WELL CONSTRUCTION, PUMP INSTALLATION, AND WATER WELL DECOMMISSIONING STANDARDS #### **TABLE OF CONTENTS** | 12-001 | SCOPE | AND AL | JTHORITY | |--------|-------|--------|----------| |--------|-------|--------|----------| - 12-002 DEFINITIONS - 12-003 GENERAL REQUIREMENTS - 12-004 POTABLE WELLS - 12-005 NON-POTABLE WELLS - 12-006 DEWATERING WELLS - 12-007 GROUND WATER MONITORING, OBSERVATION, AND RECOVERY WELLS - 12-008 RESERVED - 12-009 TEST HOLES - 12-010 GROUND WATER HEAT PUMP WELLS - 12-011 PUMP INSTALLATION - 12-012 WATER WELL DECOMMISSIONING - 2-013 DECLARATORY ORDER ABOUT SUBSTANTIALLY EQUIVALENT PROCEDURE OR MATERIAL - 12-014 VARIANCES *Note: Amendments to 178 NAC 12-002 on page 4 were approved on March 6, 2007 by the Attorney General, signed by the Governor on June 8, 2007 and filed with the Secretary of State's office the same day. They went into effect June 13, 2007. # NEBRASKA HEALTH AND HUMAN SERVICES REGULATION AND LICENSURE 178 NAC 12 TITLE 178 WATER WELL STANDARDS CHAPTER 12 WATER WELL CONSTRUCTION, PUMP INSTALLATION, AND WATER WELL DECOMMISSIONING STANDARDS <u>12-001 SCOPE AND AUTHORITY</u>: These regulations apply to the construction of water wells, the installation of pumps and pumping equipment, the collection of water samples from water wells, the inspection of installed water well equipment and chemigation regulation devices, and the decommissioning of water wells. The statutory authority is found in <u>Neb. Rev. Stat.</u> §§ 46-1201 to 46-1241, 46-602, 71-5304, and 71-5305. <u>12-001.01</u> Related Regulations: Persons doing the above types of work must consult other regulations which apply, including but not limited to the Nebraska Department of Environmental Quality (NDEQ) Title 122 Rules and Regulations for Underground Injection and Mineral Production Wells; Title 135 Rules and Regulations for Mineral Exploration Holes; and Title 128 Rules and Regulations Governing Hazardous Waste Management in Nebraska; the Department of Natural Resources Chapter 46, Article 6, and the Nebraska Department of Health and Human Services Regulation and Licensure, Title 179, Regulations Governing Public Water Systems. ### 12-002 DEFINITIONS Abandoned Water Well means any water well (1) the use of which has been accomplished or permanently discontinued, (2) which has been decommissioned as described in the rules and regulations of the Department of Health and Human Services Regulation and Licensure, and (3) for which the notice of abandonment required by Neb Rev. Stat. §46-602(2) has been filed with the Department of Natural Resources by the licensed water well contractor or pump installation contractor who decommissioned the water well or by the water well owner if the owner decommissioned the water well. Act means Neb. Rev. Stat. §§ 46-1201 to 46-1241, known as the Water Well Standards and Contractors' Licensing Act. <u>Annular Space</u> means the space between the well casing and the well bore or the space between two or more strings of well casing. # NEBRASKA HEALTH AND HUMAN SERVICES REGULATION AND LICENSURE 178 NAC 12 <u>Aquifer</u> means a geological formation, group of formations, or part of a formation that contains sufficient saturated permeable material to yield significant quantities of water to wells and springs. <u>Backflow Preventer</u> means an assembly, a device, or a construction practice that prohibits the backflow of water from the distribution piping into the water well. This includes but is not limited to check valves, curb stops, or air gaps. Bentonite means a highly plastic, colloidal sodium clay composed largely of montmorrillonite. Bentonite Seal means a viscous bentonite based material used as a seal or plug. <u>Board</u> means the Water Well Standards and Contractors' Licensing Board created in <u>Neb. Rev. Stat.</u> § 46-1217. <u>Bored or Hand Dug Well</u> means a well consisting of a large diameter borehole, usually two feet or more, lined with concrete, clay tile, brick, or stone. <u>Casing</u> means a structural retainer which is installed in the excavated hole to support loose formation, provide a conduit for movement of fluids, and/or house pumping equipment. <u>Cesspool</u> means an underground catch and discharge basin for household sewage or other liquid waste. <u>Clay</u> means a fine grained inorganic material (grains less than 0.0005 mm in diameter) which has very low permeability. <u>Community Water System</u> means a public water system that (a) serves at least 15 service connections used by year-round residents of the area served by the system or (b) regularly serves at least 25 year-round residents. <u>Confined Aquifer</u> means an aquifer in which the ground water is under pressure greater than atmospheric pressure, and its upper limit is the bottom of a bed of distinctly lower hydraulic conductivity than that of the material in which the confined water occurs. <u>Confining Layer</u> means a geologic layer of either unconsolidated or consolidated material having permeability distinctly lower than the adjacent aquifer(s). <u>Construction of Water Wells</u> means and includes all acts necessary to make a water well usable for the purpose for which it is intended including, without limitation, the siting of and excavation for the water well and its construction, alteration, or repair, but excluding the installation of pumps and pumping equipment. <u>Contamination</u> means the addition of unwholesome or undesirable parts that render the larger whole physically unclean or impure. # NEBRASKA HEALTH AND HUMAN SERVICES REGULATION AND LICENSURE 178 NAC 12 <u>Decommissioned</u> when used in relation to a water well, means the act of filling, sealing, and plugging a water well in accordance with the rules and regulations of the Department. <u>Department</u> means the Department of Health and Human Services Regulation and Licensure. <u>Dewatering Well</u> means a water well constructed for the purpose of lowering the ground water surface elevation, either temporarily or permanently. <u>Discharge Pipe</u> means any and all piping beginning at the discharge head, or pitless unit tapping, extending to the first backflow prevention device. Distribution Piping means all piping extending beyond the discharge pipe. <u>Driven Sand Point Well</u> means a well that is driven, washed or jetted into an aquifer with the sandpoint attached directly to the pump suction line. Fill Material means sand, gravel, crushed stone, native earth, or grout. Good Cause means a substantial reason consistent with the purposes of the Act. <u>Gravel Packed Well</u> means a well in which filter material is placed in the annular space around the well screen. Ground Water means water at or below the water table. <u>Ground Water Heat Pump Well</u> means a well constructed for the purpose of utilizing the geothermal properties of the earth. - Open Loop Heat Pump Well means a well that transfers heat via pumped ground water which is discharged above and/or below ground. For below ground discharge refer to NDEQ Title 122. - 2. <u>Closed Loop Heat Pump Well</u> means a well constructed for the purpose of installing the underground closed loop pipe necessary to recirculate heat transfer fluid. - a. <u>Horizontal Closed Loop</u> means a trench or pit essentially parallel to the horizon and into which a closed loop pipe is placed for the purpose of heat transfer. - b. <u>Vertical Closed Loop</u> means a borehole essentially perpendicular to the horizon into which a closed loop pipe is placed for the purpose of heat transfer. Grout means a fluid mixture of water, cement, sand, coarse aggregate, bentonite, or other material that is substantially equivalent as defined in 178 NAC 12-002. EFFECTIVE DATE JUNE 13, 2007 # NEBRASKA HEALTH AND HUMAN SERVICES REGULATION AND LICENSURE 178 NAC 12 <u>Illegal Water Well</u> means any water well which has not been properly decommissioned and which meets any of the following conditions: - 1. The water well is in such a condition that it cannot be placed in active or inactive status; - 2. Any necessary operating equipment has been removed and the well has not been placed in inactive status: - 3. The water well is in such a state of disrepair that continued use for the purpose for which it was constructed is impractical; - 4. The water well was constructed after October 1, 1986, but not constructed by a licensed water well contractor or by an individual on land owned by him/her and used by him/her for farming, ranching, or agricultural purposes or as his/her place of abode: - 5. The water well poses a health or safety hazard; - 6. The water well is an illegal water well in accordance with Neb. Rev. Stat. § 46-706; or - 7. The water well has been constructed after October 1, 1986, and such well is not in compliance with the standards developed under the Water Well Standards and Contractors' Licensing Act. <u>Inactive Status Water Well</u> means a water well that is in a good state of repair and for which the owner has provided evidence of intent for future use by maintaining the water well in a manner which meets the following requirements: - 1. The water well does not allow impairment of the water quality in the water well or of the ground water encountered by the water well; - The top of the water well or water well casing has a watertight welded or threaded cover or some other watertight means to prevent its removal without the use of equipment or tools to prevent unauthorized access, to prevent a safety hazard to humans and animals, and to prevent illegal disposal of wastes or contaminants into the water well; - 3. All entrances and discharge piping to the water well are effectively sealed to prevent the entrance of contaminants; and - 4. The water well is marked so as to be easily visible and located and is labeled
or otherwise marked so as to be easily identified as a water well and the area surrounding the water well is kept clear of brush, debris, and waste material. Injection Well means a well into which fluids are being injected (regulated under Title 122). <u>Installation of Pumps and Pumping Equipment</u> means the procedure employed in the placement and preparation for operation of pumps and pumping equipment at the water well location, including connecting all wiring to the first control and all construction or repair involved in making entrance to the water well, which involves the breaking of the well seal. ### NEBRASKA HEALTH AND HUMAN SERVICES REGULATION AND LICENSURE 178 NAC 12 <u>Installed Water Well Equipment</u> means equipment that may be set up for use on a water well such as, but not limited to, main line check valves, vacuum relief valves, chemigation devices, and flow meters. <u>License</u> means a water well contractor's license or pump installation contractor's license issued by the Department. Monitoring Well means a cased water well for the purpose of determining ground water quality. Natural Resources Ground Water Technician means any individual employed by a natural resources district and engaged in the inspection of chemigation systems, measuring and recording static water levels, inspection and servicing of flow meters, and water sampling practices and techniques. Natural resources ground water technician does not include: (1) An individual who constructs a water well or installs or repairs pumps or pumping equipment or a water well; (2) a water well monitoring technician; or (3) an individual who carries out the measurement, sampling, or inspection of a water well which is on land owned by him/her and used by him/her for farming, ranching, or agricultural purposes or as his/her place of abode. Nonpotable means all water that is not intended for human consumption. Observation Well means a cased water well for the purpose of measuring water levels. Open Hole Well means a water well that results from the drilling of a hole into certain rock formations and often finished with no casing or screen adjacent to the water-yielding portion of the rock. (See Figures 1 and 2.) <u>Person</u> means any: Individual; partnership; limited liability company; association, public or private corporation; trustee; receiver; assignee; agent; municipality or other governmental subdivision, public agency; other legal entity; or any officer or governing or managing body of any public or private corporation, municipality, governmental subdivision, public agency, or other legal entity. <u>Pitless Unit</u> means an underground discharge assembly for a water well which attaches directly to the casing and provides watertight subsurface connections for suction lines or pump discharge without the use of a pit and includes the underground distributor and the steel extension to the ground surface. <u>Pollution</u> means an impairment of water quality to a degree that restricts the intended use of ground water. <u>Potable</u> means water that is suitable for human consumption. <u>Public Water System</u> means a system for providing the public with water for human consumption through pipes or, after August 5, 1998, other constructed conveyances, if such system has at least 15 service connections or regularly serves an average of at least 25 individuals daily at least 60 days per year. Public water system includes (a) any collection, 178 NAC 12 treatment, storage, and distribution facilities under control of the operator of such system and used primarily in connection with such system and (b) any collection or pretreatment storage facilities not under such control which are used primarily in connection with such system. Public water system does not include a special irrigation district. A public water system is either a community water system or a non-community water system. Service connection does not include a connection to a system that delivers water by a constructed conveyance other than a pipe if (i) the water is used exclusively for purposes other than residential uses, consisting of drinking, bathing, cooking, or other similar uses, (ii) the Department determines that alternative water to achieve the equivalent level of public health protection provided by the Nebraska Safe Drinking Water Act and rules and regulations under the act is provided for residential or similar uses for drinking and cooking, or (iii) the department determines that the water provided for residential or similar uses for drinking, cooking, and bathing is centrally treated or treated at the point of entry by the provider, a pass-through entity, or the user to achieve the equivalent level of protection provided by the Nebraska Safe Drinking Water Act and the rules and regulations under the act. Special irrigation district means an irrigation district in existence prior to May 18, 1994, that provides primarily agricultural service through a piped water system with only incidental residential or similar use if the system or the residential or similar users of the system comply with exclusion provisions of subdivision (ii) or (iii) of this subdivision. <u>Pump Installation Contractor</u> means the principal officer, director, manager, or owner/operator of any business engaged in the installation of pumps and pumping equipment or the decommissioning of water wells. Pump installation contractor does not include: (1) an individual who installs or repairs pumps and pumping equipment for a water well, or who decommissions a driven sandpoint well, which is on land owned by him/her and used by him/her for farming, ranching, or agricultural purposes or as his/her place of abode; (2) a pump installation supervisor; or (3) an individual who repairs pumps and pumping equipment at a location other than a water well location. <u>Pump Installation Supervisor</u> means any individual engaged in the installation of pumps and pumping equipment or the decommissioning of water wells. Such supervisor may have discretionary and supervisory authority over other employees of a pump installation contractor. Pump installation supervisor does not include: (1) an individual who installs or repairs pumps or pumping equipment for a water well, or decommissions a driven sandpoint well, which is on land owned by him/her and used by him/her for farming, ranching, or agricultural purposes or as his/her place of abode; (2) an individual who repairs pumps and pumping equipment at a location other than a water well location; or (3) any licensed pump installation contractor. <u>Pumps and Pumping Equipment</u> means any equipment or materials utilized or intended for use in withdrawing or obtaining ground water including, but not limited to seals, tanks, fittings, and controls. <u>Recovery Well</u> means a water well constructed for the purpose of, or in conjunction with, the removal of contamination from an aquifer or aquifers. # NEBRASKA HEALTH AND HUMAN SERVICES REGULATION AND LICENSURE 178 NAC 12 <u>Sampling Event</u> means the collection of a single sample or a single set of samples per each site visit from a water well for the purpose of water quality analysis. <u>Sanitary Well Seal</u> means a cover fitted to the top of a well casing to seal the opening between the casing and the pump pipe and to prevent the entrance of contaminants. <u>Screen Apertures</u> means a series of openings in a water well casing, made either before or after installation of the casing, to permit the entrance of water into the well. <u>Screened Vent</u> means an inverted, U-shaped tube, or the equivalent, the open end of which is covered with a wire mesh, that is inserted into the top of a well to equalize the air pressure inside the well with that of the atmosphere. <u>Secure Cover</u> means an object placed over a borehole or water well, the purpose of which is to prevent the degradation of ground water quality and/or personal injury. <u>Seepage Pit</u> means a cavity into which sewage discharges and from which the discharge seeps into the surrounding soil. <u>Septic Tank</u> means a covered, watertight receptacle for receiving sewage and liquid waste, for separating solids and liquids, for disintegrating organic material by bacterial action, and for discharging clarified liquid for final disposal. <u>Static Water Level</u> means the distance from the ground surface to the water level in a well when the well is not being pumped. <u>Steel Casing</u> means a watertight steel pipe that is of sufficient wall thickness to permit threading or welding, is capable of withstanding the pressures exerted during installation and forces imposed by the surrounding materials, and will resist corrosion by soil and water environments. <u>Substantially Equivalent</u> means any procedure or material to be used for water well construction, pump installation, or water well decommissioning which provides equal protection to ground water resources from potential pollution and protects public health equivalent to the procedures or materials prescribed in 178 NAC 12. <u>Subsurface Disposal System</u> means any system that utilizes the soil for subsequent absorption of treated sewage; such as a lateral field, absorption trench, seepage bed, or seepage pit. <u>Supervision</u> or its derivatives means the ready availability of a person licensed or certified under the Act for consultation and direction of the activities of any person not licensed or certified who assists in the construction of a water well, the installation of pumps and pumping equipment, or decommissioning of a water well. Contact with the licensed contractor or certified supervisor by telecommunication is sufficient to show ready availability. <u>Test Hole</u> means a hole designed to obtain information on hydrogeologic conditions. 178 NAC 12 <u>Tremie Pipe</u> means a pipe or hose that carries grout or gravel pack to the placement depth. <u>Watertight Casing</u>
means water well casing that can be joined together by watertight threads, by welding, by a rubber gasket, or by cement that is not limestone or clay based that seals the well. <u>Watertight Secure Cover</u> means a welded, solvent welded, threaded, or bolted watertight cover for a water well that is secured in such a way so as to prevent its removal without the use of tools. <u>Water Sampling Practices</u> means all acts by which ground water samples are obtained from a water well or pumping system in which the water well seal is broken. The term generally includes any act which serves to protect the integrity of the water well or the quality of the ground water and may include preparation of the sampling point, use of sampling equipment, and certain aspects of sample collection. Water well monitoring technicians may temporarily employ sampling equipment or pumping equipment in a water well for each and every sampling event after which time the equipment must be removed. Natural resources ground water technicians may temporarily employ sampling equipment. Employment of sampling equipment for longer periods of time or pumping equipment may only be carried out by a licensed pump installation contractor or certified pump installation supervisor and is deemed to be pump installation rather than water sampling practices. <u>Water Well</u> means any excavation that is drilled, cored, bored, washed, driven, dug, jetted, or otherwise constructed for the purpose of exploring for ground water, monitoring ground water, utilizing the geothermal properties of the ground, obtaining hydrogeologic information, or extracting water from or injecting fluid as defined in <u>Neb. Rev. Stat.</u> §81-1502 into the underground water reservoir. Water well does not include any excavation made for obtaining or prospecting for oil or natural gas, or for inserting media to repressure oil or natural gas bearing formations regulated by the Nebraska Oil and Gas Conservation Commission. <u>Water Well Contractor</u> means the principal officer, director, manager, or owner-operator of any business engaged in the construction or decommissioning of water wells. Water well contractor does not include: (1) an individual who constructs a water well, or who decommissions a driven sandpoint well, which is on land owned by him/her and used by him/her for farming, ranching, or agricultural purposes or as his/her place of abode; or (2) a water well drilling supervisor. <u>Water Well Drilling Supervisor</u> means any individual engaged in the construction or decommissioning of water wells. Such supervisor may have discretionary and supervisory authority over other employees of a water well contractor. Water well drilling supervisor does not include: (1) an individual who constructs a water well, or decommissions a driven sandpoint well, which is on land owned by him/her and used by him/her for farming, ranching, or agricultural purposes or as his/her place of abode; or (2) any licensed water well contractor. <u>Water Well Monitoring Technician</u> means any individual engaged solely in the measuring of ground water levels, the collection of ground water samples from existing water wells, or the inspection of installed water well equipment or pumping systems. Water well monitoring 178 NAC 12 technician does not include: (1) An individual who constructs or decommissions a water well or installs or repairs pumps or pumping equipment, or a water well; (2) a natural resources ground water technician; or (3) an individual who carries out the measurement, sampling, or inspection of a water well which is on land owned by him/her and used by him/her for farming, ranching, or agricultural purposes or as his/her place of abode. <u>Well Development</u> means procedures designed to maximize the well efficiency, the objectives being to repair the damage done to the formation by the drilling operation and/or to alter the basic physical characteristics of the aguifer near the borehole. <u>Well Repairs</u> means any change, replacement, or other alteration of any water well, pump, or pumping equipment or any other activity which requires a breaking or opening of the well seal. <u>Well Screen</u> means the section of the well that allows water to pass from an aquifer into the well or from the well into an aquifer. <u>12-003 GENERAL REQUIREMENTS</u>: These requirements apply to all water wells, except as provided in 178 NAC 12-001, or as modified in 178 NAC 12-004 through 12-014. <u>12-003.01 Location</u>: A water well must be located so that it is protected from surface waters and seepage from sources of contamination and pollution. <u>12-003.01A</u> Locating to Protect from Surface Water: All water wells must be located so as to be protected from surface drainage and flooding by the natural shape of the land or by grading. 12-003.01B Locating to Protect from Seepage: All water wells except those covered in 178 NAC 12-007 must be located at least 50 feet from any septic tank; and at least 100 feet from any cesspool, privy, seepage pit, or other subsurface disposal system or other known source of contamination or pollution. A water well must be located at least 10 feet from any depression that could retain stagnant water and at least 10 feet from a pit. A water well must be at least 10 feet from any sewer line or frost-proof hydrants. For a well to be located 10 to 50 feet from a sewer, the sewer must be constructed so that it is watertight when subjected to a pressure equivalent to a column of water 10 feet high. <u>12-003.02</u> Sanitation: All water wells must be constructed to prevent the introduction of biological, chemical or radiological substances which may degrade the ground water. <u>12-003.02A</u> <u>Drilling Equipment</u>: The water well contractor must use precautions to ensure that all drill bits, drill pins, augers or other down hole equipment used in the construction of water wells are free of contaminated or polluted materials. <u>12-003.02B</u> Secure Cover: All water wells must be capped with a secure cover when they are unattended. All inactive water wells must be capped with a watertight secure cover. ### 12-003.03 Well Screens <u>12-003.03A Materials</u>: Well screens must be constructed of durable non-toxic materials of sufficient strength to withstand the pressure to which they may be subjected. They must also be resistant to any corrosion which may result from the characteristics of the water and aquifer materials in which they are placed. <u>12-003.03B</u> <u>Screen Apertures</u>: Screen apertures must be formed by the continuous slot method, louver, punched casing, molded or mill slotted. Torch slotted casing must not be used. The method of construction must allow for control of aperture width. In general, the aperture width should retain a minimum of 85% of the gravel pack, if used, or a minimum of 50% of the aquifer material if gravel pack is not used. <u>12-003.04 Well Casing</u>: All wells other than test holes and closed loop heat pump wells must be cased. Well casing must be composed of nontoxic durable material compatible with the water quality encountered. <u>12-003.04A</u> Casing Wall Thickness: The wall thickness of water well casing must be sufficient to withstand the pressures exerted by the surrounding materials, forces imposed on it during installation, and corrosion by soil and water environments. <u>12-003.04B</u> Casing Placement: The casing must be centered in the borehole in areas of grout so there is a minimum 2-inch uniform annular space. <u>12-003.04C Watertight Casing</u> must be constructed of steel, PVC, fiberglass, or teflon. Plastic watertight casing must be made of virgin material and must be manufactured expressly for water well casing. #### 12-003.05 Gravel Pack <u>12-003.05A</u> Gravel Pack must consist of clean sand or gravel of selected grain size and gradation. <u>12-003.05B</u> Gravel Pack, Screen Size, and Gradation must be determined based upon the grain size and gradation of the portion or portions of the aquifer to be screened. Gravel pack must be designed to stabilize the aquifer material and to permit the fine fraction to move into the water well during development. Gravel pack, when used, must extend to a length equal to at least 2.5 times the casing diameter above the screen apertures. <u>12-003.06 Grout</u>: The Department has approved the following grout materials: 178 NAC 12 - Neat Cement Grout Slurry must consist of a mixture of Portland Cement and not more than 6 gallons of clean water per bag (1 cubic foot or 94 pounds) of cement. - 2. <u>Sand Cement Grout Slurry</u> must consist of a mixture of Portland Cement, sand and water in the proportion of not more than 2 parts by weight of sand to 1 part of cement with not more than 6 gallons of clean water per bag of cement (1 cubic foot or 94 pounds). - Concrete Grout Slurry must consist of a mixture of Portland Cement, sand, coarse aggregate and water in the proportion of at least 6 bags of cement per cubic yard of concrete to not more than 6 gallons of clean water per bag of cement (1 cubic foot or 94 pounds). - 4. <u>Nonslurry Bentonite Grout</u> must consist of chipped or pelletized bentonite varieties that are hydrated to manufacturer's specifications. - 5. <u>Cement/Bentonite Grout Slurry</u> must consist of a mixture of cement and bentonite in the following proportion: not more than 6.5 gallons of water and 3 to 5 pounds of bentonite per 94-pound sack of Portland cement. - 6. <u>Bentonite Grout Slurry</u> means an inorganic mixture of a minimum 20% by weight solids bentonite, polymers and water or other additives for the yield/rate control, that forms a low permeability seal not greater than 1 x 10⁻⁷ cm/sec which resists flow of fluid through the seal, is pumpable, and is mixed to the manufacturer's specifications. #### 12-003.07 Placement of Grout <u>12-003.07A</u> Slurry Grout: All grout slurries must be placed by tremie or by pressure.
Concrete grout must not be allowed to free-fall more than 10 feet. <u>12-003.07B Nonslurry Grout</u>: Pellet, chip, or chunk bentonite must be placed in a manner that avoids bridging and ensures a tight homogeneous seal. <u>12-003.07C</u> Surface Seal on a Potable Well: The annular space of all wells producing water for human consumption must be grouted from a depth of at least 10 feet below ground surface or the static water level, whichever is less, to the bottom of the pitless adapter (See Figure 3B) or the ground surface if an underground connection is not used (See Figure 3A). <u>12-003.07D</u> Surface Seal on a Non-Potable Well: Wells producing water not intended for human consumption must be grouted for a vertical thickness of at least 2 feet at the 10 foot depth or the static water level, whichever is less. The annular space from the grout to the surface must be filled with grout or a mixture of drilling fluid and gravel, topsoil or clay (See Figures 4A and 4B). - <u>12-003.08</u> Aquifer Protection: All water wells must be filled and sealed in a manner that protects the water bearing formations from contamination from surface runoff and from subsurface contaminants. - <u>12-003.08A</u> Surface Completion: The earth surrounding the casing must slope away from the water well and must be firmly tamped to prevent water from seeping down around the casing. - <u>12-003.08B</u> Above Ground Protection: Plastic cased water wells must be adequately protected from below the frost line to above surface grade or terminate in a pump house. The pump house must have a concrete floor measuring a minimum of 4 inches thick and sloping away from the water well. Watertight casing must extend 12 inches above the floor of the pump house. - <u>12-003.08C</u> Filling the Annular Space: The annular space of all water wells must be filled from the top of the gravel pack to a point where the surface seal begins, as defined in 178 NAC 12-003.07C and 12-003.07D. - <u>12-003.08D</u> Confining Layers: Where confined aquifers are penetrated by the same borehole, they must be separated from each other and from unconfined waters by watertight casing and with grout (See Figure 5). - <u>12-003.08E</u> Contaminated Water Bearing Zone: All water bearing zones which contain ground water which is known to be contaminated with materials hazardous to human health must be effectively sealed off by watertight casing and by grouting throughout the length of such zones, unless the well does not penetrate any other water bearing formations. Watertight casing must conform to the provisions of 178 NAC 12-003.04. - <u>12-003.09</u> Open Hole Water Wells: When an open hole water well is constructed, the casing must be seated into the rock formation. (See Figures 1 and 2 for possible construction.) - <u>12-003.10</u> Well Development: All cased water wells must be developed to repair the damage done to the formation by the drilling operation. - <u>12-003.11 Well Logs</u>: Any owner of a water well or any licensed water well contractor who engages in the act of or business of constructing a water well must keep and maintain an accurate well log of the construction of each water well and test hole. A licensed water well contractor must forward a copy of the well log to the owner. - <u>12-003.11A</u> Required Information: The well log must include the following information: - 1. Legal description of the location of the water well or test hole; - 2. Description and depth of geologic materials encountered; 178 NAC 12 - 3. Depth and diameter or dimension of constructed water well and test hole: - 4. Diameter and depth or dimension of excavated hole if applicable; - 5. Depth of formation stabilizer or gravel pack and size of particles, if used; - 6. Depth and thickness of grout or other sealing material if applicable; - 7. Casing information, including length, inside diameter, wall thickness, and type of material if applicable; - 8. Screen information, including length, trade name, inside and outside diameter, slot size and type of material if applicable; - 9. Static water level; - 10. Water level when pumped at the designed rate giving the rate of pumping and amount of time pumped, if applicable; - 11. Yield of water well in gallons per minute or gallons per hour if applicable; - 12. Signature of water well contractor; - 13. Dates drilling commenced and construction completed; - 14. Intended use of the water well; - 15. Name and address of the owner; - 16. Identification number of any permit for the water well issued pursuant to Chapter 46, Article 6, Chapter 66, Article 11, or any other law; and - 17. Name, address, and license number of any license issued pursuant to the Water Well Standards and Contractors' Licensing Act of any person, other than the owner of the water well, who constructed the water well. <u>12-003.11B</u> Availability for Inspection: The well log must be available to the Department for inspection and copying during reasonable hours or the regular business hours of the contractor. <u>12-003.12</u> Registration: A licensed water well contractor must register all wells with the Nebraska Department of Natural Resources on forms provided by that Department, except as otherwise provided by Neb. Rev. Stat. § 46-602. #### 12-004 POTABLE WELLS <u>12-004.01</u> Construction of Potable Well: A potable water well to be used for human consumption must not be constructed as a driven sandpoint well. <u>12-004.02</u> Casing a Potable Well: A potable water well must be cased with unused watertight casing in the following manner: <u>12-004.02A</u> The well casing must extend at least 12 inches above the grade of the land surface. The earth surrounding the casing must slope away from the well and must be firmly tamped to prevent water from seeping down the casing. <u>12-004.02B</u> Non-steel cased wells must be fitted with a watertight connection to .237 inch wall minimum steel casing through the frost zone unless terminating in a pump house. - <u>12-004.02C</u> Non-steel watertight casing must be made of virgin material, must be manufactured expressly for well casing, and must meet the following specific requirements: - 1. Casing strength must be not less than 160 pounds per square inch or Standard Dimension Ratio (SDR) 26. - 2. Plastic or other non-steel casing must bear the National Sanitation Foundation (NSF) 61 stamp of approval. - <u>12-004.02D</u> Special Engineered (SE) plastic piping systems must meet the requirements of 178 NAC 12-004.02C item 2. - <u>12-004.02E</u> Thread compounds, sealants and lubricants must meet the specific requirements of 178 NAC 12-011.02A. #### 12-004.03 Developing and Test Pumping A Potable Well - <u>12-004.03A</u> Test pumping must be utilized to determine the proper size of a permanent pump and the most efficient production rate for the well. - <u>12-004.03B</u> For wells designed to pump more than 50 gallons per minute, the water level must be recorded during the period of test pumping to provide information about the depth at which the permanent pump should be set and the capacity of the formation to yield water. - <u>12-004.04</u> Completion of the top of the well must ensure protection of the ground water from surface contamination. This completion includes the provision of proper drainage away from the well, sealing the space between the wall of the drill hole and the well casing, as indicated in 178 NAC 12-003.01, 12-003.01A, 12-003.01B, 12-003.04B, 12-003.04C, and 12-003.08. Methods for ensuring proper drainage and for sealing the space between the casing and the wall of the drill hole are described in 178 NAC 12-004.02, Casing a Potable Well. - 12-004.05 Disinfecting a Potable Well: When a well which will produce water for human consumption is constructed, altered, or repaired, or has tested positive for coliform or other bacterial contamination, it must be disinfected with a solution equivalent to 200 ppm chlorine (See Table 3) to ensure that it is safe for drinking as soon as such disinfectant is flushed from the well unless specifically waived in writing by the owner, or the owner's agent. The waiver must be worded in accordance with the attached "Waiver of Disinfection." - <u>12-004.05A</u> Disinfection must be accomplished by mixing a chlorine solution of at least 200 ppm (See Table 3); opening the well; pouring the solution directly into the well; splashing the well pump, piping, casing, and other well equipment as much as possible; agitating the water in the well by surging the pump or by other means to mix the chlorine solution with the water well or recirculating the water into the well, always washing down the casing or drop pipe; letting the mixture stand in the well for a minimum of 4 hours; opening all water taps and pumping the well until a definite chlorine odor is detected at all taps; allowing the system to stand idle for a minimum of 2 additional hours; and flushing the entire system to waste. - <u>12-004.06</u> Repairing a Potable Well: All repaired wells must meet the same minimum standards as a new well with regard to design, construction, and material. Bored wells must be repaired so that they meet the standards of a bored well. (See Figure 6.) The approved repair of a dug well is illustrated in Figure 7. - <u>12-004.07</u> Bored (Seep or Cistern) Wells must be constructed to the same minimum standards for potable wells with the following exceptions: (See Figure 6.) - 12-004.07A Casing materials may include concrete, or tile. - <u>12-004.07B</u> The annular space below the surface seal must be filled with gravel. - <u>12-004.07C</u> The watertight casing is not required if the surface seal is placed from static water level to the surface of the ground. - <u>12-004.07D</u> The surface seal must be placed from the 10-foot level or static water level, whichever is less, to the surface of the ground. - <u>12-004.08</u> Open Hole Wells must be constructed to the same minimum standards for
potable wells and in the following manner. (See Figure 1.) - 12-004.08A The casing must extend into the open borehole a minimum of 2 feet. - <u>12-004.08B</u> Grout must be placed in the annular space directly above the collar for a minimum of 2 feet. - <u>12-004.09</u> Open Hole Wells in Multiple Aquifers must be constructed to the same minimum standards for potable wells and in the following manner. (See Figure 2.) - 12-004.09A The casing must extend into the open borehole a minimum of 2 feet. - <u>12-004.09B</u> Grout must be placed in the annular space directly above the collar for a minimum of 2 feet. - <u>12-004.09C</u> The screened section must be gravel packed. The area of gravel pack must extend above the top of the screen and below the bottom of the screen for a length equal to 2.5 times the diameter of the casing used. ### 12-005 NON-POTABLE WELLS <u>12-005.01</u> Construction of a Non-Potable Well: Driven sandpoint wells are permitted and must meet specific requirements as specified in 178 NAC 12-003. <u>12-005.02</u> Casing a Non-Potable Well: A non-potable water well must be cased with unused watertight casing in the following manner: ### 12-005.02A Cased wells 6 inches or less in diameter (nominal) <u>12-005.02A1</u> The well casing must extend at least 12 inches above the grade of the land surface. <u>12-005.02A2</u> Non-steel casing that extends through the frost zone to the ground surface must be surrounded by a concrete pad or a concrete collar extending through the frost zone with a minimum diameter at least 4 inches larger than the borehole. The concrete must be flush with the top of the casing. <u>12-005.02A3</u> Non-steel cased wells may be fitted with a watertight connection to .237 inch wall minimum steel casing extending through the frost zone. ### 12-005.02B Cased wells larger than 6 inches in diameter (nominal) <u>12-005.02B1</u> Must extend a minimum of 6 inches above the grade of the land surface. <u>12-005.02B2</u> Must have a concrete pad a minimum of 40 inches by 40 inches by 8 inches thick. Prefabricated slabs are acceptable. The concrete must contact the entire circumference of the casing. <u>12-005.02C</u> The earth surrounding the casing must slope away from the well and must be firmly tamped to prevent water from seeping down the casing. 12-005.02D Watertight steel casing must be a minimum of .188 inch wall thickness. <u>12-005.02E</u> Watertight non-steel casing must be made of virgin material and must be manufactured expressly for well casing and must meet the following specific requirements: Casing strength must not be less than 160 pounds per square inch or Standard Dimension Ratio (SDR) 26 for 8 inch or less diameter casing. Casing strength must not be less than schedule 40 for casing larger than 8 inches nominal diameter; and - 2. Non-steel casing must bear the National Sanitation Foundation (NSF) 61 stamp of approval. - <u>12-005.02F</u> Special Engineered (SE) plastic piping systems must meet the requirements of 178 NAC 12-005.02E item 2. - <u>12-005.02G</u> Thread compounds, sealants, and lubricants must meet the specific requirements of 178 NAC 12-011.02A. ### 12-005.03 Developing and Test Pumping a Non-Potable Well - <u>12-005.03A</u> Test pumping must be utilized to determine the proper size of a permanent pump and most efficient production rate for the well. - <u>12-005.03B</u> For Wells Designed to Pump More Than 50 Gallons Per Minute: The water level must be recorded during the period of test pumping to provide information about the depth at which the permanent pump should be set and the capacity of the formation to yield water. - 12-005.04 Completion of the Top of the Well must ensure protection of the ground water from surface contamination. This completion includes the provision of proper drainage away from the well, sealing the space between the wall of the drill hole and the well casing, as indicated in 178 NAC 12-003.01, 12-003.01A, 12-003.01B, 12-003.04B, 12-003.04C, and 12-003.08. Methods for ensuring proper draining and for sealing the space between the casing and the wall of the drill hole are described in 178 NAC 12-005.02, Casing a Non-potable Well. - <u>12-005.05</u> Repairing a Non-Potable Well: All repaired wells must meet the same minimum standards as a new well with regard to design, construction, and material. Bored wells must be repaired so that they meet the standards of a bored well. (See Figure 6.) The approved repair of a dug well is illustrated in Figure 7. - <u>12-005.06</u> Bored (Seep or Cistern) Wells must be constructed to the same minimum standards for non-potable wells with the following exceptions: (See Figure 6.) - <u>12-005.06A</u> Casing may be concrete, tile, or other material approved in 178 NAC 12-003.04C.; - 12-005.06B The annular space must be filled with gravel; - <u>12-005.06C</u> The well must be cased with unused watertight casing from the static water level; and - <u>12-005.06D</u> The surface seal must be placed from the 10-foot level or the static water level, whichever is less, to the surface of the ground. - <u>12-005.07</u> Wells with Surface Casing That Require Additional Gravel Pack must be constructed to the same minimum standards for non-potable wells and in the following manner. (See Figure 8.) - <u>12-005.07A</u> The borehole for the surface casing must be 8 inches larger than the surface casing; - 12-005.07B The surface casing must be 4 inches larger than the well borehole; - <u>12-005.07C</u> The gravel chute must be a minimum of 6 inches in diameter and must be equipped with a secure cover; - <u>12-005.07D</u> The concrete pad must be poured with a minimum dimension of 12 inches thick and 5 feet by 5 feet; and - 12-005.07E The surface seal requirement applies to the surface casing only. - <u>12-005.08</u> Open Hole Wells must be constructed to the same minimum standards for non-potable wells and in the following manner. (See Figure 1.) - 12-005.08A The casing must extend into the open borehole a minimum of 2 feet. - <u>12-005.08B</u> Grout must be placed in the annular space directly above the collar for a minimum of 2 feet. - <u>12-005.09</u> Open Hole Wells in Multiple Aquifers must be constructed to the same minimum standards for non-potable water wells and in the following manner. (See Figure 2.): - 12-005.09A The casing must extend into the open borehole a minimum of 2 feet; - <u>12-005.09B</u> Grout must be placed in the annular space directly above the collar for a minimum of 2 feet; and - <u>12-005.09C</u> The screened section must be gravel packed. The area of gravel pack must extend above the top of the screen and below the bottom of the screen for a length equal to 2.5 times the diameter of the casing used. #### 12-006 DEWATERING WELLS - <u>12-006.01</u> Permanent Installation: Permanently constructed dewatering wells must be constructed to the same standards as non-potable wells. - <u>12-006.02 Temporary Installations</u>: Temporary installations must be constructed in a manner that prevents the introduction of contaminants into the ground water. - <u>12-006.02A</u> Location: Dewatering wells must be located or the site graded so that surface drainage is away from the well. - <u>12-006.02B</u> Sanitation: Temporary dewatering wells must be constructed to prevent the introduction of microbiological, chemical, or radiological substances which may be toxic into the aquifer or aquifers penetrated. - <u>12-006.02C Well Screens</u>: Must be composed of nontoxic, durable material. - <u>12-006.02D Temporary Casing</u>: Casing and screen may be re-used. - <u>12-006.02E</u> Casing Wall Thickness: The wall thickness of temporary dewatering well casing must be sufficient to withstand the forces imposed on it during installation and pressures exerted on it by the surrounding materials. - <u>12-006.02F</u> Secure Cover: Any temporary dewatering well which is under construction must be capped with a secure cover when it is unattended. - <u>12-006.02G</u> Repair of a Dewatering Well: All temporary dewatering well repairs must be done in accordance with current standards. ### 12-007 GROUND WATER MONITORING, OBSERVATION, AND RECOVERY WELLS - <u>12-007.01 Well Screens</u>: The top of the screen aperture may extend to within 2 feet of the land surface. The gravel pack thickness may be reduced so as to not compromise the surface seal. - <u>12-007.02</u> Watertight Well Casing must be composed of nontoxic durable material compatible with water quality encountered. Wells must be cased with watertight casing through required areas of grout. The watertight casing must extend at least 12 inches above ground level except for construction in sidewalks, roadways, driveways, parking lots, other heavily trafficked areas, or wherever else the situation requires flush mounted installation with watertight caps. Casing must be chemically resistant to all contaminants which are expected to be encountered. - <u>12-007.03</u> Above Ground Protection: Non-steel cased wells completed above ground must be enclosed with a steel casing embedded in the concrete pad and covered with an overlapping, vandal-resistant secured steel cap. - <u>12-007.04</u> Filling the Annular Space: A bentonite seal with a thickness of 1 to 2 feet must be placed on top of the gravel pack. All wells must be pressure grouted from immediately above the bentonite seal to the surface. - 12-007.05 Pad: Ground water monitoring, observation, and recovery wells must have a concrete pad extending a minimum of 1 foot past the walls of the original bore hole and 178 NAC 12 must be a minimum of 8 inches thick. The concrete must contact the entire circumference of the casing. <u>12-007.06 Well Logs</u>: The location of each well must be shown on a site diagram in addition to the driller's log, to be provided in accordance with 178 NAC 12-003.11A. <u>12-007.07 Nested Well Design</u>: Wells constructed for ground water investigations may use a nested design. Figure 9
shows proper nested design. ### 12-008 RESERVED <u>12-009 TEST HOLES</u>: Test holes, constructed in conjunction with ground water investigations may be retained for no more than 10 days. <u>12-009.01 Location</u>: A test hole must be located so that it is protected from surface waters and seepage from sources of contamination and pollution. <u>12-009.02 Casing and Secure Cover</u>: A test hole must not be cased and must have a secure cover. <u>12-009.03</u> Surface Casing: When conditions dictate, surface casing is permitted but must be removed within 10 days. ### 12-010 GROUND WATER HEAT PUMP WELLS <u>12-010.01</u> Ground Water Heat Pump Wells must be constructed in accordance with 178 NAC 12-004, Potable Water Wells. Water Wells constructed to inject ground water must comply with Nebraska Department of Environmental Quality's Title 122 – Rules and Regulations for Underground Injection and Mineral Production Wells. <u>12-010.02</u> Closed Loop Heat Pump Wells: Water wells for closed loop heat pump systems must be constructed in accordance with the following standards. <u>12-010.02A</u> A closed loop heat pump system that has 10 or more boreholes must have the following information submitted to the Department a minimum of 14 working days prior to initial construction. - 1. Location of project; - 2. Name and address of licensed water well contractor supervising the installation of the heat pump system; and - 3. A completed copy of the information referenced in 178 NAC 12-003.11, showing proposed construction and installation of the closed loop heat pump system. 178 NAC 12 <u>12-010.02B Location</u>: Water wells constructed for closed loop heat pump systems must be located in accordance with 178 NAC 12-003.01. ### 12-010.02B1 Location from a Public Water System Well <u>12-010.02B1a</u> Water wells constructed for a closed loop heat pump system must be located more than 100 feet from a public water system well. <u>12-010.02B1b</u> The location of closed loop heat pump wells must comply with applicable ordinances, regulations, or other enforceable instruments of local governments to ensure adequate protection of public water systems from encroachments. <u>12-010.02B1c</u> A closed loop heat pump system with 10 or more wells must be located more than 1,000 feet from a water well supplying water to a community water system. The Department will consider approval for location of closed loop heat pump wells at closer proximity than 1,000 feet horizontal separation distance, when the licensed professional engineer or licensed professional geologist representing the owner(s) of the closed loop heat pump wells, demonstrates to the Director or Director's designee that such location will not constitute a pollution hazard to the safety of the water supply, and that the owner(s) of the community water system has no objection to the location of the closed loop heat pump wells. The engineer or geologist must submit the supporting data as appropriate to make a case for approval of the proposed location of heat pump wells to the Department 30 working days prior to the date on which action by the Director or Director's designee is desired. The contractor can not begin construction until the Department has approved the location. 12-010.02C Grouting of Vertical Ground Water Heat Pump Wells: Grouting the annulus of a heat pump well must be completed within 6 hours from the time the borehole is drilled. Full length grout placement is required on all vertical closed loop heat pump boreholes. <u>12-010.02C1</u> Placement of Grout Material: Full-length grout material must be placed by tremie from the bottom of the borehole to the top. The tremie pipe must not be left in the borehole. The grout must fill the entire borehole. Grout must not be allowed to free-fall. <u>12-010.02C2 Grout Material</u>: Drilling muds or cuttings can not be used as grout materials. Only material in 178 NAC 12-003.06 can be used as grout material in a vertical closed loop heat pump system. <u>12-010.02D</u> Borehole <u>Diameter</u>: The borehole diameter of a closed loop heat pump well must be of sufficient size to allow placement of the pipe and placement of a tremie to emplace the grout. The borehole diameter must be a minimum of 4 inches larger than the total nominal diameter of the loop pipes. <u>12-010.02E</u> Pipe: Pipe material must be composed of polyethylene, grade p34, minimum cell classifications PE 355434C or PE 345434C, when tested under ASTM Standard 3350, incorporated herein by reference. (ASTM standards are copyrighted and available from the American Society for Testing and Materials, 1916 Race St., Philadelphia, PA 19103; Phone 215-299-5585, Fax 215-977-9679. Standards may be viewed during normal business hours at the Nebraska Department of Health and Human Services Regulation and Licensure, Public Health Assurance Division, 301 Centennial Mall South, 3rd Floor, Lincoln, NE 68509.) <u>12-010.02F Pipe Joining Method</u>: Heat fusion methods for pipe joining must be the socket or butt heat fusion technique as referenced in ASTM Standards D3261 or D2683, both of which are incorporated herein by reference. (ASTM standards are copyrighted and available from the American Society for Testing and Materials, 1916 Race St., Philadelphia, PA 19103; phone 21-299-5585, fax 215-977-9679; OR standards may be viewed during normal business hours at the Nebraska Department of Health and Human Services Regulation and Licensure, Division of Public Health Assurance, 301 Centennial Mall South, 3rd floor, Lincoln, NE 68509.) <u>12-010.02G</u> Circulating Fluids: Antifreeze material or circulating fluids used in the system must be food grade potassium acetate or food grade propylene glycol. <u>12-010.02H Pressure Testing</u>: The installed system must be pressure tested at a minimum of 2 times the system operating pressure to ensure the integrity of the system. If a pressure loss is detected, the cause must be properly repaired or material replaced or properly plugged. <u>12-010.03 Horizontal System</u>: A horizontal closed loop heat pump system is exempt from the grouting requirements provided that no part of the horizontal loop is constructed in or below the ground water level. All other construction standards for closed loop heat pump wells in 178 NAC 12-010 apply. <u>12-010.04 Vertical Closed Loop:</u> A borehole essentially perpendicular to the horizon into which a closed loop pipe is placed for the purpose of heat transfer. It must meet all applicable requirements of 178 NAC 12. #### 12-011 PUMP INSTALLATION - <u>12-011.01</u> Contamination: Pumps and pumping equipment must be installed in a manner that prevents contaminants from entering the well. - <u>12-011.02</u> General Requirements: The following are general requirements and apply to the installation of all pumps and pumping equipment not already regulated, such as public water systems under Title 179. - <u>12-011.02A</u> Thread Compounds, Sealants, and Lubricants must not exceed the maximum contaminant levels for chemicals, taste, and odor. - <u>12-011.02B New System Design</u>: When designing and installing a new water supply system, all national and state codes and laws must be taken into consideration. The system must be installed according to the manufacturer's specifications. - 12-011.02C Repair or Modifications to Pumps and Pumping Equipment: Upon the removal of, or the repair and/or modification to the pump or pumping equipment in which replacement of original equipment is required, current pump and pumping equipment installation standards must be followed. This includes replacement of, or modification to the electrical wiring and/or controls located in the electrical layout serving the pump and pumping equipment including connection to the load side of the service disconnect or breaker. Any upgrade of this electrical system must be in compliance with all current applicable state or national electrical codes, and be installed according to the manufacturer's specifications. - <u>12-011.02D</u> Backflow Protection: The discharge piping from any pump and pumping equipment must be equipped with a backflow preventer. Such device must be designed to direct or isolate the water flow to prevent water in the distribution line from running back down the well during removal or repair to the pump and pumping equipment. Such device must be placed before any other device or branches in the distribution piping. In the instance of above ground discharge, such a device must be located within 1 foot of an above ground discharge head and prior to any other devices. - <u>12-011.02E</u> Flow Meters: When a flow meter is installed on an irrigation pump system, the check valve must be placed in accordance with 178 NAC 12-011.02D. The meter must be located downstream from the backflow preventer and be placed in accordance with manufacturer spacing specifications. - <u>12-011.02F</u> <u>Discharge Piping</u> includes any and all piping beginning at the discharge head or pitless unit tapping, extending to the first shut off valve or backflow preventer. When using above ground discharge, discharge piping must: - 1. Be protected against the entrance of contamination: - 2. For potable water use, be constructed of materials appropriate to each specific service; 178 NAC 12 - 3. Be equipped with a backflow preventer, chemigation valve, or air gap; - 4. Be properly anchored to prevent movement; and - 5. Be protected against water hammer. #### 12-011.02G Pitless Units must: - 1. Be manufactured and meet Pitless Adapter Standard 1997 (PAS-97) performance standards which are incorporated herein by reference and are available from Water Systems Council, 13 Bentley Dr., Sterling, VA 20165, phone 703-430-6045, fax 703-430-6185. - 2. Be factory assembled and ready for installation from a point of connection with the well casing to the unit cap or cover. - 3. Be a threaded, welded, screwed, or flanged gasket compression connection to the
well casing. - 4. Be of watertight construction throughout, except for any required vent. - 5. Be of materials and weight at least equivalent to and compatible with the casing. - 6. Have a field connection to the lateral discharge from the pitless unit of threaded, flanged, or mechanical joint connection. - 7. Terminate at least 12 inches above final ground elevation. Where a water well needs to be located in an area of high traffic and physical damage to the pitless unit is probable, the contractor may finish off the water well even with the grade of the surrounding land surface and protect it by terminating it in a pitless unit covered by a watertight flush mount cover capable of withstanding high vehicle traffic conditions. In all cases where the top of the pitless unit is enclosed in a watertight flush mount vault, the vent opening must be sealed and all electrical conduit fittings must be watertight. If the entrance of the electrical conduit is below ground level, the opening around the wire must be sealed. #### 8. Make provision for: - a. Access to the well for disinfecting or other purposes; - b. A properly constructed vent for wells with a pumping rate greater than 50 gpm; - c. A watertight secure cover at the upper terminal of the well that will prevent the entrance of contamination; - d. A contamination-proof entrance connection for electrical cable; 178 NAC 12 - e. An inside diameter sufficient for the insertion and removal of the pump and pumping equipment; and - f. At least 1 check valve to fit within the well casing. 12-011.02H Above Ground Connections: A pump house may be utilized to prevent the freezing of pipes. If used, the pump house must be mounted on a concrete platform which slopes away from the well in all directions. The casing must extend a minimum of 12 inches above the concrete platform and the space between the casing and the pump pipe must be closed with a sanitary well seal. (See Figure 10.) The well seal must be watertight and if vented, must be provided with a screened vent. <u>12-011.02l</u> Below Ground Connections: The installation of pumping and storage equipment in a pit directly over a well is not allowed. A pit for housing the equipment must be located at least 10 feet away from the well. <u>12-011.02J Casing Vent</u>: For water wells with a pumping rate greater than 50 gallons per minute, provisions must be made for venting the well casing to atmosphere. If a vent is used, it must terminate in a down-turned position, at or above the top of the casing or pitless unit and be covered with a 24 mesh corrosion-resistant screen. 12-011.02K General Requirements for Pumps Being Installed in Wells for Potable Use <u>12-011.02K1 Secure Cover</u>: Any water well, which is being serviced or repaired, must be capped with a secure cover during periods when the water well is left unattended. 12-011.02K2 Disinfection: Care must be taken so that all tools used in the removal of pumps and pumping equipment are disinfected periodically, or as needed. Disinfection solution must be equivalent to 200 parts per million chlorine solution (See Table 3). It is not permissible to lay the drop pipe, pump, pumping equipment, or wire on the ground. When a well which will produce water for human consumption is constructed, altered, or repaired or has tested positive for coliform or other bacterial contamination, it must be disinfected to ensure that the water is safe for drinking as soon as such disinfectant is flushed from the well, unless specifically waived in writing by the owner, or the owner's agent. The waiver must be worded in accordance with the attached "Waiver of Disinfection." <u>12-011.02K3</u> Sample Point: Distribution piping must include a sample point. Location of the sample point must be as follows: 1. Sample point must terminate no less than 12 inches above the floor of the basement, pit, or pump house floor. 2. A primary sample point must not be located down flow from any filter, trap, or conditioning equipment. A secondary sample point may be located down flow from a filter, trap, or conditioning equipment to verify the proper operation of such equipment. #### 12-011.03 Potable Use Requirements <u>12-011.03A</u> <u>Line Shaft Pumps</u> must comply with pumps, pumping equipment regulations of 178 NAC 12-011.02 and be equipped in the following manner: - Secure Cover: Any water well, which is being serviced or repaired, must be capped with a secure cover during periods when the water well is left unattended. - 2. <u>Sanitary Seal</u>: Pump base must be designed so the weight of the pump and column pipe is supported by the casing and resting on a concrete platform. <u>12-011.03B</u> Submersible Pumps must comply with 178 NAC 12-011.02 and be equipped in the following manner: - 1. <u>Secure Cover</u>: Any water well, which is being serviced or repaired, must be capped with a secure cover during periods when the water well is left unattended. - 2. <u>Underground Discharge Piping</u> must be equipped with a backflow preventer or an air gap and be in compliance with 178 NAC 12-011.02. - 3. Above Ground Discharge Piping must be equipped with a backflow preventer or an air gap and be in compliance with 178 NAC 12-011.02. For air gap protection, discharge piping must daylight above the high water line of any tank, pond, stream, or reservoir. - 4. <u>Pump Pipe</u> must be steel pipe or NSF 61 approved plastic material, and must include at least 1 check valve within the casing. This may include a check valve furnished with the pump. - 5. Pressure Relief Valve must be installed on any pump capable of developing a pressure higher than 115 psi, or exceeding the safe working pressure rating of the water supply system. Relief valve must be of adequate size and the plumbing where the relief valve is located must have sufficient capacity to accommodate 50% of the rated pump volume. - 6. Storage Tanks - a. <u>Pressurized, if used</u> (hydro-pneumatic or captive-air design) - (1) Tank construction must be of materials approved for use in potable water systems. - (2) Tanks must be equipped with identification as to size, maximum working pressure, and name of manufacturer. - (3) Tanks and combinations of tanks and mechanical or electronic short cycle prevention devices must be of adequate size and design to prevent short cycling of the pump motor as per the pump motor manufacturer's specifications. - b. <u>Non Pressurized, if used</u> (reservoirs, cisterns, and standpipes) - (1) Underground storage tanks must be constructed of material that is structurally adequate to withstand being buried below ground surface without collapsing when emptied. - (2) Vent must be turned downward and be covered with a #24 mesh screen. - (3) Vent piping must be of adequate size to prevent either a positive or negative pressurization of the buried tank, and - (4) Vent piping must be constructed of materials approved for use in potable water systems. Inspection hatch and vent must extend 12 inches above grade. Inspection hatch must have a watertight lid to prevent contaminants from entering the tank. <u>12-011.03C</u> Centrifugal and Jet Pumps do not require a relief valve. They must comply with 178 NAC 12-011.02 and be equipped in the following manner: - 1. <u>Secure Cover</u>: Any water well, which is being serviced or repaired, must be capped with a secure cover during periods when the water well is left unattended. - <u>Discharge</u>: In the instance the pump is located at the well site either on top of or directly adjacent to the well, the top of the casing must be effectively sealed to prevent the entrance of liquid under all conditions. The discharge piping must include a backflow preventer and be in compliance with 178 NAC 12-011.02. - 3. Offset Location: The suction pipe must be encased in a sleeve from the basement or pit wall to the well. In the instance of a packer jet system, the pressured pipeline can serve as a sleeve for the suction line. 178 NAC 12 4. <u>Priming Port</u> must be located higher than the discharge of the pump. Discharge of the priming port may be controlled with a shut off valve. Only potable water must be used for priming the pump. Priming valve must be sealed when not in use to prevent contamination from accumulating above the valve. #### 5. Storage Tanks - a. <u>Pressurized, if used</u> (hydro-pneumatic or captive-air design) - (1) Tank construction must be of materials approved for use in potable water systems; - (2) They must be equipped with identification as to size, maximum working pressure and name of manufacturer; and - (3) Tanks, and combinations of tanks and mechanical or electronic short cycle prevention devices, must be of adequate size and design to prevent short cycling of the pump motor as per the pump motor manufacturer's specifications. - b. <u>Non-pressurized storage tanks, if used</u> (reservoirs, cisterns, and standpipes) - (1) Underground storage tanks must be constructed of material that is structurally adequate to withstand being buried below ground surface without collapsing when emptied; - (2) Vent must be turned downward and be covered with a #24 mesh screen. Vent piping must be of adequate size to prevent either positive or negative pressurization of the buried tank; and - (3) Non-pressurized storage tanks must be constructed of materials approved for use in potable water systems. Inspection hatch and vent must extend 12 inches above grade. Inspection hatch must have a watertight lid to prevent contaminants from entering the tank. #### 12-011.03D Reciprocating Pumps - 1. <u>Secure Cover</u>: Any water well, which is being serviced or repaired, must be capped with a secure cover during periods when the water well is left unattended. - 2. <u>Discharge</u>: Discharge piping must be equipped with an air gap or a backflow preventer to be in compliance with 178 NAC 12-011.02. For air gap protection, discharge piping must daylight above the high water line of any tank,
pond, stream, or reservoir. If discharge is into an underground, non-pressurized storage reservoir, the discharge piping must include a backflow preventer. 3. <u>Sanitary Seal</u>: Pump base must be designed so the weight of the pump pipe and cylinder is supported by the casing or resting on a concrete platform which rests upon natural ground. ### 4. Storage Tanks - a. <u>Pressurized, if used</u> (hydro-pneumatic or captive-air design) - (1) Such tanks must be equipped with identification as to size, maximum working pressure, and name of manufacturer; - (2) Tanks and combinations of tanks and mechanical or electronic short cycle prevention devices must be of adequate size and design to prevent short cycling of the pump motor; and - (3) Tank construction must be of materials approved for use in potable water systems. - b. Non Pressurized, if used (reservoirs, cisterns, and standpipes) - (1) Underground storage tanks must be constructed of material that is structurally adequate to withstand being buried below ground surface without collapsing when emptied; - (2) Vent must be turned downward and be covered with a #24 mesh screen; - (3) Vent piping must be of adequate size to prevent either a positive or negative pressurization of the buried tank; and - (4) Must be constructed of materials approved for use in potable water systems. Inspection hatch and vent must extend 12 inches above grade. Inspection hatch must have a watertight lid to prevent contaminants from entering the tank. - 5. <u>Pressure Relief Valve</u> must be installed on any pump capable of developing a pressure higher than 115 psi, or exceeding the safe working pressure rating of the water supply system. Relief valve must be of adequate size and the plumbing where the relief valve is located must have sufficient capacity to accommodate 50% of the rated pump volume. <u>12-011.04</u> Non-potable Use Requirements: Any water well which is being serviced or repaired must be capped with a secure cover during periods when the water well is left unattended. <u>12-011.04A</u> <u>Line Shaft Pumps</u> must comply with 178 NAC 12-011.02 and be equipped in the following manner: - 1. <u>Secure Cover</u>: Any water well which is being serviced or repaired must be capped with a secure cover during periods when the water well is left unattended. - 2. <u>Sanitary Seal</u>: Pump base must be designed so the weight of the pump and column pipe is supported by the casing and resting on a concrete platform. <u>12-011.04B</u> Submersible Pumps must comply with 178 NAC 12-011.02 and must be equipped in the following manner: - 1. <u>Secure Cover</u>: Any water well which is being serviced or repaired must be capped with a secure cover during periods when the water well is left unattended. - 2. <u>Underground Discharge Piping</u> must be equipped with a backflow preventer or an air gap and be in compliance with 178 NAC 12-011.02. - 3. <u>Above Ground Discharge</u> piping must be equipped with a backflow preventer or an air gap and be in compliance with 178 NAC 12-011.02. For air gap protection, discharge piping must daylight above the high water line of any tank, pond, stream, or reservoir. - 4. <u>Pump pipe</u> must be steel pipe or NSF 61 approved plastic material, and must include at least 1 check valve within the casing. This may include a check valve furnished with the pump. - 5. Be protected against entrance of contamination. - 6. Storage Tanks - a. Pressurized, if used (hydro-pneumatic or captive-air design) - (1) Tanks must be equipped with identification as to size, maximum working pressure, and name of manufacturer; and - (2) Tanks and combinations of tanks and mechanical or electronic short cycle prevention devices must be of adequate size and design to prevent short cycling of the pump motor as per the pump motor manufacturer's specifications. - b. <u>Non-pressurized Storage Tanks, if used,</u> (reservoirs, cisterns, and standpipes) - (1) Underground storage tanks must be constructed of material that is structurally adequate to withstand being buried below ground surface without collapsing when emptied; - (2) Vent must be turned downward and be covered with a #24 mesh screen and extend at least 12 inches above grade; and - (3) Vent piping must be of adequate size to prevent either a positive or negative pressurization of the buried tank. <u>12-011.04C</u> Centrifugal and Jet Pumps must comply with 178 NAC 12-011.02 and be equipped in the following manner: - 1. <u>Secure Cover</u>: Any water well which is being serviced or repaired, must be capped with a secure cover during periods when the water well is left unattended. - 2. <u>Underground Discharge Piping</u> must be equipped with a backflow preventer or an air gap and be in compliance with 178 NAC 12-011.02 - 3. <u>Above Ground Discharge Piping</u> must be equipped with a backflow preventer or an air gap and be in compliance with 178 NAC 12-011.02. For air gap protection, discharge piping must daylight above the high water line of any tank, pond, stream, or reservoir. ### 4. Storage Tanks - a. <u>Pressurized, if used</u> (hydro-pneumatic or captive-air design) Tanks must be equipped with identification as to size, maximum working pressure, and name of manufacturer. - b. <u>Non-pressurized Storage Tanks, if used</u> (reservoirs, cisterns, and stand pipes) - (1) Underground storage tanks must be constructed of material that is structurally adequate to withstand being buried below ground surface without collapsing when emptied; - (2) Vent must be turned downward and be covered with a #24 mesh screen and extend at least 12 inches above grade; and - (3) Vent piping must be of adequate size to prevent either a positive or negative pressurization of the buried tank. #### 12-011.04D Reciprocating Pumps - Secure Cover: Any water well which is being serviced or repaired must be capped with a secure cover during periods when the water well is left unattended. - 2. <u>Above Ground Discharge Piping</u> must be equipped with a backflow preventer or an air gap to be in compliance with 178 NAC 12-011.02D - . For air gap protection, discharge piping must daylight above the high water line of any tank, pond, stream, or reservoir. - 3. <u>Discharge Piping</u> must be equipped with a backflow preventer or an air gap and be in compliance with 178 NAC 12-011.02D. - 4. <u>Sanitary Seal</u>: Pump base must be designed so the weight of the pump pipe and cylinder is supported by the casing or resting on a concrete platform which rests upon natural ground. #### 5. Storage Tanks: - a. <u>Pressurized, if used (hydro-pneumatic or captive-air design):</u> Tanks must be equipped with identification as to size, maximum working pressure, and name of manufacturer. - b. <u>Non-pressurized Storage Tanks, if used</u> (reservoirs, cisterns, and stand pipes) - Underground storage tanks must be constructed of material that is structurally adequate to withstand being buried below ground surface without collapsing when emptied; - (2) Vent must be turned downward and be covered with a #24 mesh screen and extend at least 12 inches above grade; and 178 NAC 12 (3) Vent piping must be of adequate size to prevent either a positive or negative pressurization of the buried tank. ### 12-012 WATER WELL DECOMMISSIONING <u>12-012.01</u> General Requirements: The well cavity of all water wells to be decommissioned must be filled and sealed in accordance with the appropriate procedure described below. Any licensed water well contractor constructing a water well for any customer must as a part of the agreement include the proper decommissioning of each water well and test hole constructed to explore for ground water pursuant to the agreement. <u>12-012.02</u> Preliminary Work: Prior to decommissioning a water well, the depth of the well and the static water level must be measured and an investigation must be made to determine the details of the well construction. Potential sources of well construction details include: - 1. The personal records of the owner, - 2. The contractor that drilled the well, - 3. The registration forms on file with the Nebraska Department of Natural Resources. - 4. Water well contractors familiar with the area, and - 5. Water well records on file with the University of Nebraska-Lincoln Conservation and Survey Division. <u>12-012.03</u> Obstructions: Every effort must be made to remove obstructions. If they cannot be removed, the well cavity must be filled with fill material from the bottom of the well to a point above the obstruction. If this is not possible, a 5-foot grout plug must be placed above the obstruction, or the entire length of the water well from the obstruction to the surface must be grouted. 12-012.04 Material Volume: The volume of material required to decommission a water well can be calculated using the formulas in Table 1, the well depth, and well construction information. Table 2 lists the well casing volumes for various casing diameters. Volumes for each interval that is to be either filled or sealed must be calculated prior to beginning. Materials used and calculated volumes must be consistent. If they are not, (1) additional material must be added to replace lost volumes until the interval is filled or sealed or (2) if material bridges in the well (evidenced by calculated amount of filler/sealer being too much), operations must stop until the bridge is removed by high pressure jetting, drilling, or other methods. <u>12-012.05</u> Well Decommissioning Materials: Either fill material or grout material must be used to decommission water wells. Grout seals must be used to prevent water movement into or between water-bearing zones; fill material may be used where grout seals are not necessary. <u>12-012.05A</u> Grout Material: Acceptable grout material which can be used as a seal in decommissioning water wells is found in 178 NAC 12-003.06. <u>12-012.05B Fill Material</u> to be used in water wells in intervals where grout
seals are not used or are not required must be disinfected sand, gravel, or crushed stone except that native earth material may be used in large diameter or hand dug wells because of the volume required. All fill material must be free of potentially toxic chemical residue and trash such as leaves and foreign materials. All fill material must be sized and introduced into the well at a rate to avoid bridging. <u>12-012.06 Disinfection</u>: Chlorine must be introduced into the well to disinfect the standing water before any material is placed into the well. (This will also disinfect the fill material placed adjacent to the water-bearing zones.) The chlorine can be in a liquid, granular, or pellet form. Enough chlorine must be used to create a concentration of at least 200 parts per million in the standing water. (See Table 3 for the amount of chlorine to use.) Sand and gravel fill material must be disinfected by mixing a chlorine disinfectant with the material as it is placed in the well. <u>12-012.07 Upper Plug</u>: All cased water wells to be decommissioned must have an upper plug to prevent surface and near-surface contaminants from entering the well casing. If the water well records indicate that a surface seal was installed during construction, then either option below may be used. If a surface seal was not installed or it is not known if a surface seal was installed, then Option 1 must be used. <u>12-012.07A Option 1</u>: Remove the top 3 feet of the well casing and grout the upper 3 feet of the remaining casing. Install a 6-inch thick grout seal above the top of the casing that extends a minimum of 1 foot past the walls of the original drilled hole and extends at least 1 foot below the top of the cut-off casing. Backfill the remainder of the hole with native soil mounded for settlement and proper drainage. (See Figure 11.) <u>12-012.07B</u> Option 2: If the water well was constructed with an annular surface seal, the water well casing may be left in place. A 10-foot long plug must be placed in the casing and terminated at the top of the casing. (See Figure 11.) A watertight secure cover must be installed on top of the casing. 12-012.08 Procedures for Specific Well Types are set forth below and must be followed. <u>12-012.08A</u> <u>Dug Water Wells or Bored Water Wells</u>: These wells typically have diameters ranging from 30 to 60 inches or greater. 1. Measure the static water level and the total depth of the well; - 2. Use these measurements and Tables 1 and 2 to determine the volume of material to be used; - 3. Fill the well cavity up to within 1 foot of the measured static water level with clean disinfected sand and/or gravel; - 4. Install a 3-foot bentonite seal on top of the disinfected fill material; - 5. Fill the remainder of the well cavity with sand, gravel, or native earth material that extends up to within 6 feet of the ground or final graded surface; - 6. Place 3 feet of grout or bentonite seal material in the casing and cut off or remove the top 3 feet of the casing and install a grout seal with a minimum thickness of 6 inches over the well and extending 1 foot beyond the well casing; and - 7. Place native earth material in the excavated hole and mound over the well to accommodate future settling and to divert surface water away from the well. (See Figure 12.) #### 12-012.08B Drilled Wells - 1. Measure the static water level and the total depth of the well. - 2. Use these measurements and Tables 1 and 2 to determine the volume of material to be used. - 3. Fill the casing with clean disinfected sand, gravel, or grout up to 1 foot below the static water level. - a. If the static water level is less than 6 feet, refer to upper plug procedures for near-surface decommissioning. - b. If the static water level is greater than 6 feet, place a seal at least 3 feet thick on top of the sand/gravel fill. (See Figure 13.) - 4. If water is in the casing, place the grout slurry from the bottom up using a tremie pipe. Non-slurry bentonite material (coarse, chunk, pellets, etc.) may be used if placed slowly to prevent bridging. - 5. Fill the remainder of the well with clean sand or gravel or grout up to 6 feet below the ground surface. (See Figure 11 Option 1) At this point, place a 3-foot grout seal in the casing. (See Figure 11 Option 1.) - 6. The remainder of the water well must be decommissioned as described in the Upper Plug Section. (See Figure 11.) <u>12-012.08C</u> <u>Driven Sandpoint Wells</u>: The sandpoint must be pulled out of the ground if possible. With the sandpoint removed, the hole may collapse and fill with #### NEBRASKA HEALTH AND HUMAN SERVICES REGULATION AND LICENSURE 178 NAC 12 native material. If the hole does collapse, excavate the hole to a depth of 3 feet and place a 1-foot thick grout seal over the hole. Backfill the excavated hole with native soil mounded for settlement. If the hole does not collapse, fill the open hole with grout up to within 3 feet of the ground surface. Backfill the remainder of the hole with native soil mounded for settlement. If the casing cannot be pulled, fill the entire casing with grout to the top and cut off the casing 3 feet below the ground surface and backfill the remainder of the hole with native soil mounded for settlement. (See Figure 14.) 12-012.08D Multiple Aquifer Wells: Water wells that obtained water from more than 1 water bearing zone must have a seal between each zone if each water bearing zone is separated by a confining layer. (See Figure 15.) A grout seal not less than 5 feet in length must be placed adjacent to each confining layer and 3 feet of grout at the static water level. <u>12-012.08E</u> <u>Monitoring, Observation, and Recovery Wells</u>: Must be decommissioned by pressure grouting the inside of the screen and casing. (See Figure 16.) A secure watertight cover must be installed on top of the casing. The rest of the well is decommissioned as described in the Upper Plug Section. 12-012.08F Flowing Water Wells and Confining Layers: Decommissioning these wells requires the placement of neat cement through a tremie line fast enough to stop the flow; otherwise, expandable plugs may be installed in the casing (or bedrock if not cased) to stop the water flow. If it is known that a confining layer exists, the following procedure to install an intermediate seal (See Figure 17) is required. If, during construction, the casing was not grouted at the confining unit, a plug is set at the bottom of the confining layer and the casing perforated a minimum of 3 feet, to allow pressure grouting of the annular space with neat cement. Pressure grouting with neat cement is required. Bentonite grout can be used above the confining layer if the flow is stopped using neat cement with or without a packer. The casing is filled to within 3 feet of the land surface. The casing is then cut off and the hole backfilled with compacted native soil. Abandoned flowing water wells, even very low volume wells, can develop significant pressure that may cause water to move up to the outside of the well casing. Since this leakage may take some time to be noticeable, flag the exact location of these wells for at least 1 year after plugging. #### 12-012.08G Closed Loop Heat Pump Wells must be decommissioned as follows: - 1. Remove all heat transfer fluid from the closed loop, and - 2. Dig down to the top of the borehole and cut off the loop pipe at least 3 feet below the surface. Pump the remaining loop full of bentonite or #### NEBRASKA HEALTH AND HUMAN SERVICES REGULATION AND LICENSURE 178 NAC 12 cement slurry. Allow the grout to fill the upper 1 foot of borehole. Fill remaining hole with compacted earth. <u>12-012.08H Test Holes</u>: The borehole must be filled and sealed with grout or acceptable fill material to within 3 feet of the surface. Place a grout seal over the borehole, and backfill the remainder with native earth material mounded for settling. Seal confining layers with a 5-foot grout plug placed directly adjacent to the confining layer. Drill cuttings are acceptable fill material. <u>12-012.09</u> <u>Documentation</u>: A record that includes the materials used, the quantity of those materials, location of placement thereof, and mix specifications, including the type and viscosity of bentonite grouts must be maintained on every decommissioned water well, including test holes. 12-012.10 Reporting Decommissioning: A notice of decommissioning must be submitted to the Director of the Department of Natural Resources on the Notice of Abandonment form supplied by the Department of Natural Resources within 60 days of the decommissioning of the water well except as required in Neb: Rev. Stat. § 46-602(2) as follows: - 1. The pump installation contractor or water well contractor must submit written notice of the decommissioning of a water well to the Department of Natural Resources. - 2. If both a water well contractor and a pump installation are involved in the decommissioning of a water well, the pump installation contractor must submit the notice of decommissioning to the Department of Natural Resources. - 3. If a landowner decommissions a driven sandpoint water well on land owned by him/her and used by him/her for farming, ranching, or agricultural purposes or as his/her place of abode, the landowner must report the decommissioning to the Department of Natural Resources. ### 12-013 DECLARATORY ORDER ABOUT SUBSTANTIALLY EQUIVALENT PROCEDURE OR MATERIAL <u>12-013.01</u> Any water well contractor, pump installation contractor or any other person carrying out activities subject to 178 NAC 12 who desires to carry out such work by a procedure inconsistent herewith or using materials other than herein prescribed but which the contractor or other person believes to be substantially equivalent to the standards prescribed in 178 NAC 12 may request a declaratory order by the Department on whether the proposed procedure or material is
substantially equivalent to the prescribed standards and may be used to comply with 178 NAC 12. <u>12-013.02</u> Such a request must be submitted in writing at least 10 days prior to the initiation of construction or alteration of the well(s) involved, unless good cause is shown for a shorter review period. <u>12-013.03</u> The request must include a description of the material(s) and/or construction procedure(s) proposed, identify the procedure or material required by the prescribed standards and include proof of the alleged equivalency and such written arguments as are deemed appropriate by the requesting party. <u>12-013.04</u> Such request must be made generally in accordance with 184 NAC 2, Rules of Practice and Procedure of the Department for Declaratory Orders, but unless the requesting party at the time of the request demands a hearing thereon, the matter will be deemed submitted on the written request, attachments thereto, and facts of which the Department takes judicial notice. <u>12-013.05</u> Any order issued by the Department hereunder will be binding between the Department and the requesting party on the facts alleged unless it is altered or set aside by a court. The Department may in situations when the submission of a request 10 days in advance would result in an immediate environmental threat, significant economic hardship on or pose a health threat to the owner or other persons, waive the 10 day review period. 12-014 VARIANCES: The Department may grant a variance from any rule, regulation, or standard adopted and promulgated by the Department relating to the construction of a water well upon proof by a licensed water well contractor or well owner that the enforcement of the rule, regulation, or standard would create an unreasonable hardship or be unreasonable, impractical, or not feasible under the circumstances. A variance is limited to the construction of a water well to replace an existing water well. A variance may only be requested after a declaratory order about substantially equivalent procedure or material has been requested and denied. <u>12-014.01</u> Procedures for Requesting a Variance: The party requesting the variance or renewing a variance must submit the variance request to the Department along with any applicable fee. The request for a variance must be submitted in writing at least 10 days prior to the planned initiation of construction of the well involved. Variances may only be granted in writing by the Department. All variance requests must contain the following: - 1. The name, address, telephone number, and signature of the person(s) requesting the variance; - 2. The specific rule(s) for which the variance is requested (if more than 1 rule is affected then each must be listed): - 3. The reason the rule(s) cannot be met, with supporting evidence; - 4. The length of time for which the variance is requested; - 5. The alternative or protective measure that will be taken to assure a comparable degree of protection to health or environment; - 6. Construction plans and specifications of the proposed water well with all the relevant and required information listed in 178 NAC 12-003.11A; and - 7. A scaled map showing the location of the well in relation to property lines, structures, utilities, and contamination sources. <u>12-014.02 Variance Conditions</u>: A variance may be under such terms and conditions and for such time as the Department may prescribe. The Department must notify the requesting party in writing of the decision to grant or deny the variance. If a variance is granted, the notification must specify conditions or alternative measures imposed upon the variance, if any. If the variance is denied, the Department will specify the reasons for the denial. <u>12-014.03</u> Alternative Measures or Conditions: Alternative measures or conditions attached to a variance have the force and effect of the applicable regulation. If the alternative measure or condition attached to the variance is violated, the party may be enjoined from continuing such activities. The injunction may include an order to properly decommission the water well. <u>12-014.04</u> Renewal of a Variance: A request for a renewal of a variance must be submitted in writing to the Department within 30 days of the expiration date. A renewal request must contain the information in 178 NAC 12-014.01 (Procedures for Requesting a Variance). A variance may be renewed if the party continues to satisfy the criteria for granting the variance and demonstrates compliance with the alternative measures or conditions imposed at the time the original variance was approved. Table 1 | Useful Equivalents and Formulas | | | | | |---------------------------------|--|--|--|--| | 1 pint | 16 fluid ounces | | | | | 1 pint | 2 cups | | | | | 1 cubic foot (ft ³) | 7.48 gallons | | | | | 1 cubic yard (yd ³) | 27 cubic feet | | | | | Gallons per foot of depth | 0.0408 (opening diameter, square inches) | | | | | Cubic feet per foot of depth | 0.0055 (opening diameter, square inches) | | | | Table 2 Well casing volume and bentonite needed to fill a well casing | Diameter of opening | Volu
Gallons per foot
of depth | ume Cubic feet per | Approximate pounds graded bentonite per foot* | Approximate linear feet filled per 50 pound bag of graded bentonite | |---------------------|--------------------------------------|--------------------|---|---| | | • | | | | | 2 inches | 0.16 | 0.02 | 1.4 | 35.70 | | 3 inches | 0.37 | 0.05 | 3.5 | 14.30 | | 4 inches | 0.65 | 0.09 | 6.3 | 7.90 | | 5 inches | 1.02 | 0.14 | 9.8 | 5.10 | | 6 inches | 1.47 | 0.20 | 14.0 | 3.60 | | 8 inches | 2.61 | 0.35 | 24.5 | 2.00 | | 10 inches | 4.08 | .055 | 38.5 | 1.30 | | 12 inches | 5.88 | 0.79 | 55.3 | 0.90 | | 14 inches | 8.00 | 1.07 | 74.9 | 0.67 | | 16 inches | 10.44 | 1.40 | 98.0 | 0.51 | | 18 inches | 13.22 | 1.77 | 123.9 | 0.40 | | 2 feet | 23.50 | 3.14 | 220.0 | 0.23 | | 2.5 feet | 36.72 | 4.91 | 344.0 | 0.16 | | 3 feet | 52.88 | 7.07 | 495.0 | 0.10 | | 4 feet | 94.00 | 12.57 | 880.0 | 0.06 | | 5 feet | 146.90 | 19.64 | 1375.0 | 0.04 | | 6 feet | 211.50 | 28.27 | 1979.0 | 0.03 | | 7 feet | 287.90 | 38.48 | 2694.0 | 0.02 | | 8 feet | 376.00 | 50.27 | 3519.0 | 0.01 | | 9 feet | 475.90 | 63.62 | 4453.0 | 0.01 | | 10 feet | 587.50 | 78.54 | 5498.0 | 0.01 | ^{*}Based on a granular bentonite bulk density of 70 pounds per cubic foot. (The typical range of reported bulk density is 68 to 72 pounds per cubic foot) Table 3 Amount of chlorine product needed to create a concentration of approximately 200 parts per million in the water standing in a well casing | | Liquid chlorine concentration | | Liquid chlorine concentration Dry chlorine concentration | | |---------------------------|---|--------|--|-------| | Inside diameter of casing | 6% | 10% | 65% | 70% | | | Fluid ounces per foot of water depth Ounces per | | foot of depth | | | 3 inches | 0.22 | 0.09 | 0.02 | 0.01 | | 4 inches | 0.39 | 0.17 | 0.03 | 0.03 | | 5 inches | 0.61 | 0.26 | 0.04 | 0.04 | | 6 inches | 0.88 | 0.38 | 0.06 | 0.06 | | 8 inches | 1.57 | 0.67 | 0.11 | 0.10 | | 10 inches | 2.45 | 1.04 | 0.17 | 0.16 | | 12 inches | 3.53 | 1.50 | 0.24 | 0.22 | | 14 inches | 4.80 | 2.05 | 0.33 | 0.31 | | 16 inches | 6.26 | 2.67 | 0.43 | 0.40 | | 18 inches | 7.93 | 3.38 | 0.54 | 0.50 | | 2.0 feet | 14.10 | 6.02 | 0.97 | 0.90 | | 2.5 feet | 22.03 | 9.40 | 1.51 | 1.40 | | 3.0 feet | 31.73 | 13.54 | 2.17 | 2.02 | | 4.0 feet | 56.40 | 24.06 | 3.86 | 3.59 | | 5.0 feet | 88.14 | 37.60 | 6.03 | 5.60 | | 6.0 feet | 126.90 | 54.15 | 8.69 | 8.07 | | 7.0 feet | 172.74 | 73.70 | 11.82 | 10.98 | | 8.0 feet | 225.60 | 96.26 | 15.44 | 14.34 | | 9.0 feet | 285.54 | 121.80 | 19.55 | 18.15 | | 10.0 feet | 352.50 | 150.40 | 24.13 | 22.41 | ## EFFECTIVE DATE NEBRASKA HEALTH AND HUMAN SERVICES FEBRUARY 12, 2005 REGULATION AND LICENSURE 178 NAC 12 #### WAIVER OF DISINFECTION | This is to certify that I have been informed by | |---| | of the advantages of the disinfection of the water well producing water for human consumption | | located at | | I do not desire to have the well disinfected and hereby waive the disinfection requirement. | | Well Owner or Owner's Agent | | Data | 178 NAC 12-002 12-003.09 12-004.08 12-005.08 FIGURE 1 OPEN HOLE CONSTRUCTION FIGURE 2 ### OPEN HOLE CONSTRUCTION MULTIPLE AQUIFERS Figure 3 A Surface Seal for Potable Water Wells Figure 3 Figure 4 A Surface Seal for Non-Potable Water Wells #### Figure 4 # Aquifer Protection Confining Layers - Potable/Non-potable Figure 5 FIGURE 6 BORED WELLS FIGURE 7 # REPAIRING/RECONSTRUCTING A DUG WATER WELL **Nested Well Design** FIGURE 10 A SANITARY WELL SEAL FIGURE 12 ### DECOMMISSIONING DUG WATER WELLS OR BORED WATER WELLS FIGURE 13 DECOMMISSIONING DRILLED WELLS DECOMMISSIONING DRIVEN SANDPOINT WELLS FIGURE 15 DECOMMISSIONING MULTIPLE AQUIFER WELLS Figure 16 DECOMMISSIONING MONITORING AND RECOVERY WELLS FIGURE 17 ### DECOMMISSIONING FLOWING WATER WELLS AND CONFINING LAYERS